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Fig. 1: The proposed visualization interface containing spending data from the Brazilian Federal Government. Our method
correctly identifies and displays a relevant temporal pattern mainly related to a common policy of the Labour Ministry to pay
workers benefits, that is periodic over years and have a peak in the middle of the year.

Abstract—Recent developments in multi-way array decom-
position, also known as tensor decomposition methods, have
made the analysis and interpretation of patterns in multi-way
data a feasible task, fostering a multitude of applications in
machine learning and data analysis. However, the use of tensor
decomposition to assist visualization applications is still incipient,
mainly in problems involving time-varying data. In this work, we
present a time-varying multi-way data visualization method that
relies on tensor decomposition to reveal hidden temporal patterns
as well as the data components that most contribute for those
patterns.

I. INTRODUCTION

In the last decade multi-way analysis has gained popularity,
mainly due to the theoretical and computational advances in
tensor decomposition methods [1]. In fact, multi-way analysis
via tensor decomposition has been successfully employed
in problems involving audio and video processing, machine
learning, and data mining [2]. Nevertheless, the use of tensor
decomposition in the context of visualization is still incipient.
Existing techniques rely on tensor decomposition mostly for
social network visual analysis and glyph-based visualization
(see Subsection I-A), thus not exploiting the potential of multi-
way representations to handle time-varying data together with
the relationship among the tensor modes.

In this work we show how the factors resulting from a
non-negative tensor decomposition scheme can be interpreted

and built into a parallel sets [3] visual metaphor to enable a
simple and intuitive visual analysis of time-varying multi-way
data. We also employ interactive resources to illustrate how the
different modes of the tensor relate to each other, allowing the
visual analysis of the patterns hidden in the data. Moreover, an
optimization procedure is proposed to reduce edge crossing,
typically found in parallel sets visual metaphor, thus reducing
visual clutter. Results from a real data case study show the
effectiveness of our approach in revealing gist information
from complex data sets.

In summary, the main contributions of this work are:
• A novel time varying data visual analysis methodology

that relies on tensor decomposition, pattern recognition,
and parallel sets visual metaphor.

• An optimization procedure to reduce edge crossing in
parallel sets, making the visual metaphor more scalable
for multiple modes.

• A visualization system to assist users in the exploration of
time-varying data represented as multi-way arrays, which
builds upon a new interpretation of tensor decomposition
components to reveal patterns hidden in the data.

A. Related work

In this section we discuss techniques that, at some stage of
the visualization process, demand a multi-way representation
and/or tensor decomposition to produce visualizations. Special



attention is given to visualization techniques where temporal
information is considered as one of the modes in a multi-
way representation. A comprehensive discussion about time-
varying data visualization is beyond the scope of the paper and
we refer interested readers to the surveys of Aigner et al. [4]
and Kehrer and Hauser [5].

Mosaic Plots and its variants [6], [7] figure among the main
options for visualizing multi-way data. However, those plots
do not scale properly beyond five or six modes and they
also present limitations when dealing with time-varying multi-
way data. As an alternative, Cox and Hackborn [8] propose a
method that uses one view for each dimension of a multi-way
table, linking distinct views such that user actions in one view
are reflected in the others.

The combination of multi-way representation and tensor
decomposition has been exploited in the context of visual
analysis of social networks. Oliveira and Gama [9] propose the
use of 3-way arrays to visualize students friendship networks.
Tensors are built using statistics of each “actor” in fixed time
slices, setting time as the third dimension. The visualization
is accomplished by properly projecting tensor modes onto the
subspace generated by the two most representative components
of each factor resulting from the the tensor decomposition.
However, the two-dimensional scatter plot does not favor the
visual analysis of the interplay between different tensor modes
nor the identification of temporal patterns.

Tensor decomposition has also been employed in the con-
text of simulations. Ballester-Ripoll [10] use the tensor train
representation to visualize the parameter space for varied
automotive simulations, applying this tensor format to enable
an exploratory visualization of the parameter space in complex
simulations.

In general, the methods above only visualize one or two
modes at once or visualize different modes separately, frag-
menting the visual analysis and thus demanding larger cog-
nitive effort to understand patterns and phenomena hidden
in the data. In contrast, our approach makes use of parallel
sets to visually connect the different modes resulting from
a tensor decomposition, giving the user a full picture of the
latent information in the data.

II. NONNEGATIVE TUCKER DECOMPOSITION AND ITS
INTERPRETATION

An n-tensor T is a multi-way array with elements indexed
by an n-tuple of indices, that is, each entry in T is represented
as ti1,i2,...,in . Each index ik corresponds to a mode of the
tensor with range in the set {1, 2, . . . , Ik}, where Ik is the
dimension of mode k. Scalars, vectors, and matrices are partic-
ular cases of 0-tensors, 1-tensors, and 2-tensors, respectively.

Similarly to matrices, tensors can be decomposed as sim-
pler tensors (for example, rank one tensors whose precise
definition is beyond our scope, see [2] for details), each
one containing relevant information about the original tensor.
Finding such simpler tensors is the end goal of the so-
called tensor decomposition methods. There are several classes
of tensor decomposition methods, being Canonical Polyadic

decompositions [11], Tucker decompositions [2], and Tensor-
train decomposition [12] the most important ones. Tucker
decompositions figure among the most flexible alternatives,
mainly in terms of constraints that can be imposed during the
decomposition process. Therefore, we have chosen the Tucker
decomposition as basis for the present work.

Tucker decompositions take as input an n-tensor T ∈
RI1×I2×···×In and output a core tensor G ∈ RR1×R2×···×Rn

with the same number of modes as T and a set of n factor
matrices A(k) ∈ RIk×Rk , one for each mode of T . By properly
combining the core tensor G and the factor matrices, one
can reconstruct or approximate the original tensor T . The
representation provided by a Tucker decomposition is given
by the following expression:

T u
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· · ·
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)
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where gi1,i2,...,in is an entry in G, a(k)ik
the ik-th column of the

factor matrix A(k), a(k)ik
◦a(l)

il
is the outer product between the

column vectors a(k)ik
and a(l)il

, and the values of Ri are chosen
to achieve a compromise between the extraction of relevant
information and computational cost. Figure 2 illustrates how
the first term of the summation in Equation (1) is obtained.
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Fig. 2: Illustration of the Tucker decomposition of a 3-tensor
T , resulting in a core tensor G and three factor matrices
{A(1),A(2),A(3)}.

In the context of the present work we consider the Non-
negative Tucker Decomposition (NTD) [13], where the values
on the core tensor and the factor matrices are enforced to
be nonnegative. Non-negativity constraints naturally introduce
sparsity and a “part” based representation of the data, making
it easier to interpret results [14]. Moreover, the magnitude of
the values in the core tensor are directly related to relevance
of the factors and their interplay.

A. Tucker interpretation

Equation 1 tells us that the original tensor T is decomposed
as a linear combination of simpler tensors Ci1,i2,...,in = a(1)i1

◦
a(2)i2
◦ · · · ◦ a(n)

in
given by the outer product of the columns of

the factor matrices, scaled by the corresponding element of the
core tensor gi1,i2,...,in . Each of those simpler tensors comprises
a piece of latent information within the original data tensor.

From this point of view, it is similar to what is given by
the SVD matrix decomposition, where we have the singular
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Fig. 3: Visualization pipeline.

vectors combined and scaled by their singular value. In that
decomposition the singular vectors can be seen as pattern that
defines a piece of the space where it is. Similarly, in this
work we interpret each column a(j)

ij
as composing patterns in

the corresponding modes, i. e., in the case of a tensor formed
by modes of ( time × user × item ), the columns can be
interpret as patterns of time, patterns of users and patterns
of items, respectively. At same time, we interpret the value
gi1,i2,...,in as the importance of the information constructed
by the combination of the patterns {a(1)i1

, a(2)i2
, . . . , a(n)in

}, i.e.,
the entries gi1,i2,...,in of the core tensor reveals which set of
patterns are more relevant and more connected.

The interpretation above is the building block of our visu-
alization method, as detailed in section III.

III. VISUALIZATION LAYOUT

Following the presented Tucker interpretation we propose
a visualization based on a variant of parallel sets [3]. Our
approach follows the pipeline illustrated in Fig. 3.

A. Parallel Sets representing tensor decomposition

Parallel sets [3] are specially designed to represent data with
categorical dimensions, meaning that in each dimension there
are a limited number of different values. Considering a dataset
with n categorical attributes, each attribute is represented
by a pillar, which are organized side by side similarly to
parallel coordinates. The pillars are segmented in bins, one
for each possible value the corresponding attribute can assume.
The bins between adjacent pillars are connected if there are
instances with attributes equal to the corresponding bins. The
larger the number of instances sharing the corresponding
attributes, the thicker the line strip connecting the bins.

In this work we use the foundations of parallel set as visual
metaphor, letting the tensor modes to play the role of pillars
and the discovered patterns (columns from the factor matrices)
as the categories. More specifically, each factor matrix gives
rise to a pillar in the parallel sets metaphor. The bins associated
to each pillar correspond to the columns of the factor matrix.
For instance, the layout depicted in the right of Fig. 3 shows
the decomposition of a 3-tensor. In each bin a corresponding
pattern is visually expressed by a appropriated metaphor. Since
in this work we focus on temporal pattern the leftmost pillar
always corresponds to a temporal mode of the tensor, and will
be expressed as a time series. The middle and rightmost pillars
correspond to the other two modes of the tensor. The number
of bins in each column is dictated by the dimension Ri chosen
in the decomposition. The values of the core tensor gi1,i2,...,in

are expressed by the line strips, i. e., the larger the value of
gi1,i2,...,in is the wider the related line strip. These components
together are capable of expressing all values given by a tensor
decomposition.

To help users better understand the data, in our visualization
we implement a number of visual and interactive resources,
including color codes, highlight and selection. Users can also
select some patterns of interest by clicking in particular bins
or line strips, as depicted in Fig. 1.

B. Crossing minimization problem in weighted multi-layer
graph

The growth in the number of modes and patterns increases
the number of elements to be represented in the layout, so
the visualization can become cluttered due to the amount of
crossing between line strips. To avoid this problem we im-
plemented two strategies: relaxation of the strips input/output
order, and crossing minimization between adjacent pillars.

Based on [3], we allow the input and output position of
the line strip in each bin to be different, that is, the vertical
position a line strip reaches a particular bin from the left does
not need to be the same it leaves the bin on the right. Such
relaxation reduces the number of edge crossing.

To solve the crossing minimization problem in weighted
multi-layer graph we used the integer programming model
proposed by Junger [15], but considering weighted edges. As
a result, the problem is to minimize the crossing edges giving
higher priority to edges with larger weight. Given the space
limitation, it will not be explained here.

IV. RESULTS

The effectiveness of the proposed methodology is shown in
a real application scenario, a case study involving large amount
of Brazilian government data.

A. Visualizing Brazilian Government Spending

For this case study, we considered expense information from
the transparency initiative of the Brazilian government [16],
containing 60 millions transactions, from January 2011 to Oc-
tober 2015, for a total value just over R$ 1 trillion. Four modes
were considered: temporal, the ministry which authorized it,
the recipient type, and the type of the expense. Since most of
the recipient types were banks, we identified the three most
common banks directly: the Bank of Brazil (BB), the Federal
Savings Bank (CAIXA), and the National Bank for Economic
and Social Development (BNDES). Additionally, for several
reasons, the recipient of the expenses are not always identified,



resulting in a new category Not Informed (NI). Figure 4a
illustrates our visualization of this dataset, considering a
resulting core tensor of dimensions (4, 4, 4, 4). The dimensions
have been obtained by the DIFFIT method [17].

(a) Initial visualization.

(b) Pattern mainly related to Ministry of Labour in incentives to create jobs.

(c) Pattern mainly related with monetary compensations in social security.

(d) Pattern mainly related to a special policy that was active only in 2014.

Fig. 4: Visualization of spending patterns in the initial visu-
alization and highlighting relation between temporal patterns
and other modes.

Starting from the temporal patterns, we identify four distinct
spending profiles, where it’s easy to see common temporal
patterns as periodic, seasonal, and peaks (first pillar in Fig. 4).
Since we are working with governmental data, each of this
patterns are associated with political events or known trends.
We have investigated their origins based on media reports,
which clearly identify the underlying events for each pattern.

In each of the temporal patterns we can observe useful
insights based on the activity magnitude:

• The first pattern shown in Figure 1, having mainly the
Labour Ministry (Ministério do Trabalho e Emprego) as

origin and CAIXA as recipient, is related to worker social
benefits, such as unemployment and health insurance. The
periodic peaks starting in July are related to the PIS
program of social benefits, payed between July/August
to October/November between 2011 to 2014. In 2015 the
payment calendar was modified to spread the benefit be-
tween July 2015 to March 2016, which can be visualized
in the same temporal pattern [18].

• The second pattern shown in Figure 4b, having mainly
the Labour Ministry as origin and BNDES as recipient, is
related to incentives for job creation via loans to private
companies. In 2013, the ministry had a large debt with
the bank, which was paid at the beginning of 2014, which
is observed as a peak in the pattern. It was reported that
there was no other payments during this year, which is
also observed in the pattern.

• The third pattern shown in Figure 4c, presents some
mixing with the previous and next pattern, but its main
characteristics are payments occurring during 2013 and
2015 from the Treasury (Ministério da Fazenda) to ex-
penses to a social security fund. This is a special group
for accounting expenses such as rate reductions and
exemptions.

• The last group of expenses is depicted on Figure 4d.
It is mainly comprised of benefits for the elderly and
disabled, from the Ministry of Social Security (Ministério
da Previdência Social). Further, this expense occurred
mostly in 2014. Indeed, this expense is provenient from a
different interpretation of the Brazilian Constitution, im-
plemented in 2014, that was later deemed unconstitutional
and interrupted in 2015.

Additionally, we can view by color coding that the Ministry
of Cities (Ministério das Cidades) has a connection to CAIXA
for loan concession spending for all figures. This correlates to
social habitation programs and subsides offered by the federal
government that do not have a strong temporal characteristic.
As such, the factorization “mixed” this type of spending into
each temporal pattern. This can be viewed by selecting the
corresponding bin in the interactive visualization, but not
included due to space limitations.

Finally, it’s worth highlighting that the bin size and time
series amplitudes do not map to a monetary value, but rather
to a relative importance measure.

V. CONCLUSION

In this work we have proposed a novel visual analytic
methodology for analyzing multi-way time-varying data that
combines tensor theory, pattern recognition, and parallel sets
visual metaphor in an interactive visualization. Also, it trans-
forms a complex structure such as a tensor into a visual
representation that includes all extracted information from a
tensorial decomposition technique, summarizing the informa-
tion in an accessible form, effective in revealing important
events given by variation in the data. The usefulness of the
proposed methodology was attested in a real data case study.



In our visualization it is possible to easily identify the
connection between the temporal pattern and its behavior
in other modes of the data, as well as the importance of
each pattern relative to the whole dataset as expressed by
its magnitude. Due to the non negativity restriction imposed,
the more relevant patterns are detected in the decomposition
and presented in the visualization, which can give insights to
guide the knowledge extraction by presenting only the most
important information.
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