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Abstract—An automatic, landmark free SVM-based method
for head pose estimation, solely using the nose region, in
constrained and unconstrained scenarios, is presented. Using the
nose region has advantages over the whole face; it is less likely
to be occluded or deformed by facial expressions, and is proven
to be highly discriminant in all poses from profile to frontal. The
approach, SVM-NosePose, receives a nose region as and classifies
it into a discrete set of poses. Estimation favorably compares
against state-of-the-art works on six publicly available datasets.
Three applications are derived from the proposed methodology:
1) the original inclusion of a head pose score for face quality
estimation for initializing a nose tracker, leading to higher
accuracy; 2) 3D face alignment in the wild using only the nose
pose, enabling consistent estimates even in challenging scenarios;
and 3) multipose action unit detection and intensity estimation
for facial images in the wild.

I. INTRODUCTION

Head pose estimation is defined as determining at least one
of the three parameters that configures the face relative to
its three degrees of freedom, yaw, pitch and roll, and the
camera [1]. It has direct applications in other computer vision
problems, including gaze estimation [2], face quality assess-
ment [3], face recognition [4], facial landmark detection [5],
automatic affect analysis in infants [6] and face frontalization
[7].

Although the whole face is traditionally used for estimating
the head pose [1] and the scientific community has been
showing great interest in depth images [8], [9], this work
focuses on unconstrained environments, where extreme head
poses are common and no specific sensor is used. Under such
conditions, face detection and pose estimation are considered
difficult problems [10].

SVM has been used to classify the gradient information
of the nose region into a discrete set of angles [11], but it
was only applied on one controlled dataset. For estimating
the pose in the wild using the whole face, Peng et al.
[12] perform manifold analysis, while Demirkus et al. [13]
aggregate probability density functions, estimated from facial
features, based on temporal information.

This work proves that the nose can be successfully used for
estimating the head pose in both constrained and unconstrained
environments, in a variety of datasets. The use of the nose for
face processing has previously been shown efficient [11], [14],

This paper is based on the work of a M.Sc. dissertation

[15], as it has multiple desirable qualities. Unlike the eyes and
ears, it is visible even in profile faces; unlike the mouth, it
cannot be easily deformed by speech and expressions; it is
also less likely to be partly occluded by accessories and facial
traits, such as sunglasses and beards, when compared to using
the whole face. In addition, the head pose is needed for many
computer vision applications.

SVM-NosePose was developed and classifies the head pose
into a discrete set of angles using Support Vector Machines
(SVM), trained with the output of the Local Gradient Increas-
ing Pattern (LGIP) filter [16]. SVM-NosePose is coupled with
the state-of-the-art Faster R-CNN detector [17] for making the
method fully automatic.

An evolution of the SVM-NosePose method, based on
CNNs (Convolutional Neural Networks), and three direct
applications are also discussed: 1) Enhancing an existing face
quality estimator [18] by providing a head pose score and
using it for initializing a nose tracker; 2) Generating consistent
estimations for landmark free 3D face alignment in the wild
under extreme poses and facial expressions; 3) Additionally,
NosePose is used as a regularization term in a CNN for
detecting action units and estimating their intensity.

SVM-NosePose’s performance is evaluated on six publicly
available datasets. Two of which were built using images
acquired in controlled environments and four which include
images from unconstrained environments. Examples from both
kinds are shown in Figure 1. When possible and appropriate,
SVM-NosePose is compared against the state-of-the-art, en-
abling and in-depth performance evaluation to be carried.

This paper is organized as follows: Section 2 presents the
head pose estimation method and its individual steps; Section 3
discusses the obtained results on all datasets for both the whole
method and its individual steps; Section 4 introduces SVM-
NosePose’s derived works and direct contributions; finally,
Section 5 concludes with the final remarks.

II. SVM-NOSEPOSE

SVM-NosePose can be divided into three main steps:
detection, feature extraction and classification. The state-of-
the-art generic object detector, Faster R-CNN [24], trained
specifically for the nose detection task, composes the first
step. This method is an evolution of Fast R-CNN [25], it
addresses its proposal generation performance by introducing



(a) PaSC [19]

(b) Multi-PIE [20] (c) Pointing’04 [21] (d) McGill Faces [22]

(e) AFW [10] (f) SFEW [23]

Fig. 1: Example images acquired in both constrained (b and c) and unconstrained (a, d, e and f) environments

the concept of Region Proposal Networks, which are able
to create detection proposals in near real-time. Each pos-
sibility is subsequently evaluated by existing deep network
models before outputting the final detections. SVM-NosePose
normalizes all nose regions to 54x60 pixels, an empirically
determined size, before the next step.

When defining the feature extraction step, using Pawelczyk
and Kawulok’s [11] as basis, multiple descriptors were tested.
Results show that binary patterns accurately describe the nose
region for estimating the head pose, including LBP [26],
LGP [27] and LGIP [16]. Further experimentation indicate
that the best performance can be achieved with subregion
LGIP histograms. By subdividing the nose region, some spatial
information is allowed to be present while also allowing

some variation to occur. The exact number of subregions is
determined during training and varies with each dataset. An
exhaustive search is performed with all perfect squares from
1 to 100, the one that maximizes the total accuracy is chosen.
The descriptor selection, experimentation and the adjustment
of the number of regions is detailed in [28].

Classification is performed using SVM. The LGIP filter [16]
is applied on the detected nose region, which is subsequently
divided into subregions. The histogram of each is calculated
and concatenated, forming the feature vector. A SVM with
a RFB kernel is trained with 10-fold cross validation for
classifying the features into a discrete set of poses. The
granularity of the existing classes depends on each dataset,
varying from 15 to 45 degrees. This process is presented as a
diagram in Figure 2.

Fig. 2: SVM-NosePose diagram [29]



III. EXPERIMENTAL RESULTS

SVM-NosePose was evaluated on six publicly available
datasets. Two of which were acquired in controlled envi-
ronments, Multi-PIE [20] and Pointing’04 [21], and four in
unconstrained scenarios, McGillFaces [22], SFEW [23], PaSC
[19] and AFW [10].

Each dataset encompasses different difficulties and chal-
lenges (Figure 1), allowing for a thorough evaluation. It is
important to note that extreme poses are underrepresented in
all unconstrained datasets in this work. Due to their nature,
controlled datasets tend to have an equal distribution of the
possible variations in the head yaw. However, many common
applications for in-the-wild face processing tend to favor near
frontal poses. These differences are well represented in the
different datasets (Figure 3).
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Fig. 3: Head yaw distribution on all datasets

Because SVM-NosePose depends on Faster R-CNN [24]
to be fully automatic, the detector is evaluated separately on
all datasets in order to isolate, determine and understand the
limitations of the methodology.

A. Nose Detection

Nose detection performance is first evaluated in isolation.
For each dataset, Faster R-CNN [24] is trained using all default
parameters for detecting the nose region. In order to assess
the performance, Hoover et al.’s intersection coefficient [30]
(Equation 1) between the detection region and the ground-truth
annotation is used as metric.

ic(A,B) = min(area(intersection(A,B))/area(A),

area(intersection(A,B))/area(B))
(1)

Faster R-CNN is able to detect the nose region with great
performance on Multi-PIE, Pointing’04, McGillFaces and
SFEW. However, performance is degraded on PaSC and AFW.
AFW contains a limited number of images, which directly
influences Faster R-CNN’s ability to learn. PaSC contains a
significant number of low quality and low resolution faces and

noses, including completely blurred regions. Unlike the other
datasets, the subjects in PaSC represent only a small area of
the images, which is incompatible with the default training
parameters. To evaluate the effects of the size of the image,
a second nose detector was trained on PaSC, using only the
cropped face regions as input, generating considerably lower
false positive rates.
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Fig. 4: Intersection Coefficient curves on all datasets. The
number in parenthesis is the area under the curve [28]

The achieved accuracy and false positive rates are available
in Table I. Similarly, Figure 4 presents the results in curves af-
ter using Faster R-CNN’s internal detection score for filtering
down to one detection for each subject in the image.

TABLE I: Percentage of images where the intersection coef-
ficient of the detected nose region and the annotated ground-
truth is at least 0.5 and the amount of false positives [28]

Dataset Accuracy False Positives
Multi-PIE 99.66% 15.52%

Pointing’04 99.89% 29.38%
McGillFaces 97.21% 22.56%

SFEW 90.86% 14.21%
PaSC 82.89% 92.51%

PaSC (face only) 73.66% 47.97%
AFW 51.19% 79.18%

B. Pose Estimation

SVM-NosePose was evaluated using both the detected nose
regions and ground-truth (GT) annotations, for individually
assessing the performance of the pose estimation step. Two
evaluation protocols are used when applicable: strict, only
correct classifications are considered hits; and weak, when off-
by-one classifications are considered hits.

Multi-PIE [20] contains images of over 300 subjects in
a controlled scenario, including variations in illumination
and facial expression. Each scene is captured simultaneously
with 15 cameras, two overhead sensors and 13 representing



different head poses from -90 to 90 degrees along the yaw
axis, in steps of 15. SVM-Nosepose was trained with 10,000
images and tested on 355,900. All nose regions were annotated
semi automatically due to the controlled nature of the dataset.
Despite the large number of classes when estimating the pose
on the yaw axis, the controlled environment favors high hit
rates with both protocols when SVM-NosePose is tested with
the ground-truth nose regions (Table II). When the nose is
detected automatically, performance degrades only with the
strict protocol.

Pointing’04 [21] includes 2,790 images of 15 subjects
acquired in a controlled environment. The head pose varies
on both yaw and pitch axes from -90 to 90 degrees, totalling
13 classes on the yaw axis and nine on the pitch axis. A
total of 1,842 images were used for training and 836, for
testing. Results are presented for each axis in Table II. When
compared to those achieved on Multi-PIE [20], the strict hit
rate is noticeably lower, as the annotation is not perfect [11].

McGillFaces [22] is composed of videos of 60 subjects
with a total of 18,000 frames. Challenges include variations in
illumination, facial expressions, variations in scale, translation
and head pose. However, only of portion of these images are
publicly available and only a smaller portion include head
yaw annotations (9 classes). The nose region was manually
annotated and 3208 images were used for training and 3457,
for testing. After inspecting the annotations, inconsistencies
were found and a filtered version of the dataset was a generated
[29], containing only the images with reliable annotation. The
filtered version includes 2475 images for training and 2854
for testing. Results for both are presented in Table III. The
effects of the filter are clear in the results, with a significant
increase in accuracy.

The Static Facial Expressions in the Wild dataset (SFEW)
[23] is collection of movie frames, encompassing multiple
different unconstrained scenarios. It contains a total of 1,700
images, subdivided into three subsets. Both nose regions and
head poses (5 classes) were manually annotated. When evalu-
ating SVM-NosePose, the training and validation subsets were
merged for training (957 images) and the testing subset was
used for testing (372 images). Positive results were obtained
despite the adversities in the input images (Table III).

The Point and Shoot Challenge dataset (PaSC) [19] contains
multiple still images and videos of numerous subjects perform-
ing common actions in different indoor and outdoor environ-
ments. All still images containing a nose were annotated with
both the nose region and head yaw (5 classes). A new subset

division of the dataset was used, as the original was conceived
for face recognition, containing overlapping subjects, and is
not suited for the head pose estimation problem. This process
resulted in a total of 5784 training and 6243 testing images.
Results on this dataset indicate SVM-NosePose’s robustness
in unconstrained scenarios (Table III).

While the Annotated Faces in the Wild (AFW) dataset [10]
is smaller than all other datasets, with only 205 images and
468 annotated subjects, it is the most challenging. Annotations
are provided with a precision of 15 degrees, totalling 13
classes from -90 to 90 in the yaw axis. The nose regions
were manually annotated. To train SVM-NosePose on this
dataset, 168 subjects are augmented 14-fold, by flipping and
rotating, such that 2352 regions are fed to SVM and the
remaining 300 are tested on. Performance is similar to the
state-of-the-art when the ground-truth nose regions are present.
However, due to Faster R-CNN’s nature [24], which requires
more images for performing efficient detection, performance
degrades significantly using the detected regions (Table III).

TABLE II: Head pose estimation performance on controlled
datasets

Method Evaluation Multi-PIE Pointing’04
Yaw

Pointing’04
Pitch

SVM-NosePose GT Strict 94.13% 61.36% 58.49%
SVM-NosePose GT Weak 99.31% 95.69% 94.50%

SVM-NosePose Strict 76.67% 45.53% 57.42%
SVM-NosePose Weak 97.13% 83.96% 92.82%

[10] Strict 91.40% – –
[10] Weak 99.99% – –
[13] Strict 94.46% – –
[11] Strict – 56.99% 47.91%
[11] Weak – 93.41% 77.80%

On the controlled datasets, SVM-NosePose achieves accu-
racy rates higher or similar to those using the whole face found
in the literature. A decrease in performance can be noticed
on the challenging, in the wild, datasets, however, SVM-
NosePose still achieves compatible accuracy rates, confirming
its competitiveness in such scenarios.

When coupled with the automatic nose detector (Faster
R-CNN), performance degrades due to the variations in the
detected nose regions, particularly in the smaller datasets
where less training data is available, such as AFW. However,
the method is still suitable for direct non-trivial applications,
discussed in the next section.

TABLE III: Head pose estimation performance on unconstrained datasets

Method Evaluation McGillFaces Filtered
McGillFaces SFEW PaSC AFW

SVM-NosePose GT Strict 59.24% 70.71% 83.60% 86.91% 44.71%
SVM-NosePose GT Weak 83.34% 92.68% – – 81.26%

SVM-NosePose Strict – 55.08% 66.67% 75.65% 7.14%
SVM-NosePose Weak – 82.98% – – 31.55%

[10] Weak – – – – 81.00%
[13] (18,000 images) Strict 79.02% – – – –



Fig. 5: Example landmark estimations on the 3DFAW challenge [31]

IV. CONTRIBUTIONS

Multiple contributions were derived from SVM-NosePose.
The ability to accurately estimate the head pose in uncon-
strained environments is of direct use for other face processing
challenges.

An original head pose quality measure was conceived and
integrated as an extra feature into an existing face quality
estimator [18]. This measure is derived directly from SVM-
NosePose’s discrete pose output. The value generated by the
measurements depends on the problem it is being applied to. In
some situations, it can be more beneficial to have frontal faces
(e.g. face recognition), while other times, different poses may
contain more useful information (e.g. 3D face reconstruction).
This quality measurement is applied for selecting a frame
and initializing a state-of-the-art nose tracker. Tests on the
300VW dataset [32] indicate an increase in accuracy when
compared to the baseline initialization with the first frame
[33]. Temporal information is useful for locating the nose
region in difficult environments, where detection methods fail
to adequately locate the nose in all frames.

A Convolutional Neural Network (CNN) pose estimator,
CNN-NosePose, was derived from SVM-NosePose [29]. This
new approach takes the same nose regions as input, but
replaces the feature extraction and classification steps, such
that they are learned by the CNN, which uses an architecture
optimized for estimating the head pose. The trained network
eliminates the need for manually providing the number of
subregions and is able to better handle the regions detected
by Faster R-CNN when compared to SVM-NosePose. An
advantage provided by CNNs is the ability to fully utilize
and learn from large datasets, favoring success in difficult
scenarios with abundant data. Its overall accuracy under such
conditions outperforms SVM-NosePose and the state-of-the-
art, particularly when a large number of images is available.

As part of the 3D Face Alignment in the Wild challenge
(3DFAW) [34], CNN-NosePose was used for estimating the
pose in difficult scenarios, e.g. facial expressions and extreme
head poses. The calculated pose, nose size and location are
used for translating, rotating and scaling a generic 3D land-
mark model, resulting in coherent estimations of the position

of the landmarks even in difficult cases [31]. This methodology
was also tested with SVM-NosePose and similar results were
achieved, due to the straightforwardness in locating the nose
in the challenge’s images [28]. Two example alignment results
can be seen in Figure 5. A further optimization of the position
of these landmark estimations was presented by Silva [35],
who combined them with a state-of-the-art landmark estimator
to produce accurate estimations in both 2D and 3D.

Batista et al. [36] proposed AUMPNet, a single CNN ar-
chitecture for simultaneous facial Action Unit (AU) detection
and intensity estimation under multiple head poses. CNN-
NosePose’s fully connected layers were used aside of the main
architecture fully connected layers for handling head pose
variations. Thus, the whole architecture was optimized using
a multitask loss composed of AU detection, AU intensity re-
gression and head pose estimation. This optimizes AUMPNet’s
ability to learn better representations under multiple head pose
variations.

V. FINAL REMARKS

A fully automatic landmark free method for estimating
the head pose in challenging scenarios using only the nose
region was presented. It was shown, through experiments
where SVM-NosePose outperforms the state-of-the-art, that
the nose is a suitable candidate for face processing in the
wild. SVM-NosePose’s degraded performance when fed with
detected nose regions was addressed in derived work [29].
As a confirmation of the method’s efficiency and efficacy, an
evolution of the work presented [29] was produced and three
direct applications of the NosePose methodology [31], [33],
[35], [36] were conceived and successfully tested. In future
work, CNN-NosePose can be further optimized and applied for
solving different face processing problems, including gender
estimation, 3D face reconstruction and face recognition. Some
of these possibilities are explored and are included in an
extended paper that has been submitted to a high impact
journal.
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